python-sdk
The official Python SDK for Model Context Protocol servers and clients
MCP Relevance Analysis
Summary
python-sdk is a high relevance project related to Model Context Protocol. It has 10814 stars and 1151 forks on GitHub.
Key Features
- MCP integration capabilities
- AI context management
- Language model communication
- Structured data processing
Use Cases
- Enhancing LLM context handling
- Improving model response quality
- Building more effective AI applications
README
- MCP Python SDK
- Table of Contents
- Overview
- Installation
- Adding MCP to your python project
- Running the standalone MCP development tools
- Quickstart
- server.py
- Create an MCP server
- Add an addition tool
- Add a dynamic greeting resource
- What is MCP?
- Core Concepts
- Server
- Add lifespan support for startup/shutdown with strong typing
- Create a named server
- Specify dependencies for deployment and development
- Pass lifespan to server
- Access type-safe lifespan context in tools
- Resources
- Tools
- Prompts
- Images
- Context
- Running Your Server
- Development Mode
- Add dependencies
- Mount local code
- Claude Desktop Integration
- Custom name
- Environment variables
- Direct Execution
- or
- Mounting to an Existing ASGI Server
- Mount the SSE server to the existing ASGI server
- or dynamically mount as host
- Examples
- Echo Server
- SQLite Explorer
- Advanced Usage
- Low-Level Server
- Pass lifespan to server
- Access lifespan context in handlers
- Create a server instance
- Writing MCP Clients
- Create server parameters for stdio connection
- Optional: create a sampling callback
- MCP Primitives
- Server Capabilities
- Documentation
- Contributing
- License
MCP Python SDK#
Table of Contents#
- MCP Python SDK
Overview#
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:
- Build MCP clients that can connect to any MCP server
- Create MCP servers that expose resources, prompts and tools
- Use standard transports like stdio and SSE
- Handle all MCP protocol messages and lifecycle events
Installation#
Adding MCP to your python project#
We recommend using uv to manage your Python projects.
If you haven't created a uv-managed project yet, create one:
bashuv init mcp-server-demo
cd mcp-server-demo
Then add MCP to your project dependencies:
bashuv add "mcp[cli]"
Alternatively, for projects using pip for dependencies:
bashpip install "mcp[cli]"
Running the standalone MCP development tools#
To run the mcp command with uv:
bashuv run mcp
Quickstart#
Let's create a simple MCP server that exposes a calculator tool and some data:
python# server.py
from mcp.server.fastmcp import FastMCP
# Create an MCP server
mcp = FastMCP("Demo")
# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""Get a personalized greeting"""
return f"Hello, {name}!"
You can install this server in Claude Desktop and interact with it right away by running:
bashmcp install server.py
Alternatively, you can test it with the MCP Inspector:
bashmcp dev server.py
What is MCP?#
The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:
- Expose data through Resources (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
- Provide functionality through Tools (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
- Define interaction patterns through Prompts (reusable templates for LLM interactions)
- And more!
Core Concepts#
Server#
The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:
python# Add lifespan support for startup/shutdown with strong typing
from contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from dataclasses import dataclass
from fake_database import Database # Replace with your actual DB type
from mcp.server.fastmcp import Context, FastMCP
# Create a named server
mcp = FastMCP("My App")
# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])
@dataclass
class AppContext:
db: Database
@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
"""Manage application lifecycle with type-safe context"""
# Initialize on startup
db = await Database.connect()
try:
yield AppContext(db=db)
finally:
# Cleanup on shutdown
await db.disconnect()
# Pass lifespan to server
mcp = FastMCP("My App", lifespan=app_lifespan)
# Access type-safe lifespan context in tools
@mcp.tool()
def query_db(ctx: Context) -> str:
"""Tool that uses initialized resources"""
db = ctx.request_context.lifespan_context.db
return db.query()
Resources#
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:
pythonfrom mcp.server.fastmcp import FastMCP
mcp = FastMCP("My App")
@mcp.resource("config://app")
def get_config() -> str:
"""Static configuration data"""
return "App configuration here"
@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
"""Dynamic user data"""
return f"Profile data for user {user_id}"
Tools#
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:
pythonimport httpx
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("My App")
@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
"""Calculate BMI given weight in kg and height in meters"""
return weight_kg / (height_m**2)
@mcp.tool()
async def fetch_weather(city: str) -> str:
"""Fetch current weather for a city"""
async with httpx.AsyncClient() as client:
response = await client.get(f"https://api.weather.com/{city}")
return response.text
Prompts#
Prompts are reusable templates that help LLMs interact with your server effectively:
pythonfrom mcp.server.fastmcp import FastMCP
from mcp.server.fastmcp.prompts import base
mcp = FastMCP("My App")
@mcp.prompt()
def review_code(code: str) -> str:
return f"Please review this code:\n\n{code}"
@mcp.prompt()
def debug_error(error: str) -> list[base.Message]:
return [
base.UserMessage("I'm seeing this error:"),
base.UserMessage(error),
base.AssistantMessage("I'll help debug that. What have you tried so far?"),
]
Images#
FastMCP provides an Image
class that automatically handles image data:
pythonfrom mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImage
mcp = FastMCP("My App")
@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
"""Create a thumbnail from an image"""
img = PILImage.open(image_path)
img.thumbnail((100, 100))
return Image(data=img.tobytes(), format="png")
Context#
The Context object gives your tools and resources access to MCP capabilities:
pythonfrom mcp.server.fastmcp import FastMCP, Context
mcp = FastMCP("My App")
@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
"""Process multiple files with progress tracking"""
for i, file in enumerate(files):
ctx.info(f"Processing {file}")
await ctx.report_progress(i, len(files))
data, mime_type = await ctx.read_resource(f"file://{file}")
return "Processing complete"
Running Your Server#
Development Mode#
The fastest way to test and debug your server is with the MCP Inspector:
bashmcp dev server.py
# Add dependencies
mcp dev server.py --with pandas --with numpy
# Mount local code
mcp dev server.py --with-editable .
Claude Desktop Integration#
Once your server is ready, install it in Claude Desktop:
bashmcp install server.py
# Custom name
mcp install server.py --name "My Analytics Server"
# Environment variables
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://...
mcp install server.py -f .env
Direct Execution#
For advanced scenarios like custom deployments:
pythonfrom mcp.server.fastmcp import FastMCP
mcp = FastMCP("My App")
if __name__ == "__main__":
mcp.run()
Run it with:
bashpython server.py
# or
mcp run server.py
Mounting to an Existing ASGI Server#
You can mount the SSE server to an existing ASGI server using the sse_app
method. This allows you to integrate the SSE server with other ASGI applications.
pythonfrom starlette.applications import Starlette
from starlette.routing import Mount, Host
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("My App")
# Mount the SSE server to the existing ASGI server
app = Starlette(
routes=[
Mount('/', app=mcp.sse_app()),
]
)
# or dynamically mount as host
app.router.routes.append(Host('mcp.acme.corp', app=mcp.sse_app()))
For more information on mounting applications in Starlette, see the Starlette documentation.
Examples#
Echo Server#
A simple server demonstrating resources, tools, and prompts:
pythonfrom mcp.server.fastmcp import FastMCP
mcp = FastMCP("Echo")
@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
"""Echo a message as a resource"""
return f"Resource echo: {message}"
@mcp.tool()
def echo_tool(message: str) -> str:
"""Echo a message as a tool"""
return f"Tool echo: {message}"
@mcp.prompt()
def echo_prompt(message: str) -> str:
"""Create an echo prompt"""
return f"Please process this message: {message}"
SQLite Explorer#
A more complex example showing database integration:
pythonimport sqlite3
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("SQLite Explorer")
@mcp.resource("schema://main")
def get_schema() -> str:
"""Provide the database schema as a resource"""
conn = sqlite3.connect("database.db")
schema = conn.execute("SELECT sql FROM sqlite_master WHERE type='table'").fetchall()
return "\n".join(sql[0] for sql in schema if sql[0])
@mcp.tool()
def query_data(sql: str) -> str:
"""Execute SQL queries safely"""
conn = sqlite3.connect("database.db")
try:
result = conn.execute(sql).fetchall()
return "\n".join(str(row) for row in result)
except Exception as e:
return f"Error: {str(e)}"
Advanced Usage#
Low-Level Server#
For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API:
pythonfrom contextlib import asynccontextmanager
from collections.abc import AsyncIterator
from fake_database import Database # Replace with your actual DB type
from mcp.server import Server
@asynccontextmanager
async def server_lifespan(server: Server) -> AsyncIterator[dict]:
"""Manage server startup and shutdown lifecycle."""
# Initialize resources on startup
db = await Database.connect()
try:
yield {"db": db}
finally:
# Clean up on shutdown
await db.disconnect()
# Pass lifespan to server
server = Server("example-server", lifespan=server_lifespan)
# Access lifespan context in handlers
@server.call_tool()
async def query_db(name: str, arguments: dict) -> list:
ctx = server.request_context
db = ctx.lifespan_context["db"]
return await db.query(arguments["query"])
The lifespan API provides:
- A way to initialize resources when the server starts and clean them up when it stops
- Access to initialized resources through the request context in handlers
- Type-safe context passing between lifespan and request handlers
pythonimport mcp.server.stdio
import mcp.types as types
from mcp.server.lowlevel import NotificationOptions, Server
from mcp.server.models import InitializationOptions
# Create a server instance
server = Server("example-server")
@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
return [
types.Prompt(
name="example-prompt",
description="An example prompt template",
arguments=[
types.PromptArgument(
name="arg1", description="Example argument", required=True
)
],
)
]
@server.get_prompt()
async def handle_get_prompt(
name: str, arguments: dict[str, str] | None
) -> types.GetPromptResult:
if name != "example-prompt":
raise ValueError(f"Unknown prompt: {name}")
return types.GetPromptResult(
description="Example prompt",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(type="text", text="Example prompt text"),
)
],
)
async def run():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="example",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)
if __name__ == "__main__":
import asyncio
asyncio.run(run())
Writing MCP Clients#
The SDK provides a high-level client interface for connecting to MCP servers:
pythonfrom mcp import ClientSession, StdioServerParameters, types
from mcp.client.stdio import stdio_client
# Create server parameters for stdio connection
server_params = StdioServerParameters(
command="python", # Executable
args=["example_server.py"], # Optional command line arguments
env=None, # Optional environment variables
)
# Optional: create a sampling callback
async def handle_sampling_message(
message: types.CreateMessageRequestParams,
) -> types.CreateMessageResult:
return types.CreateMessageResult(
role="assistant",
content=types.TextContent(
type="text",
text="Hello, world! from model",
),
model="gpt-3.5-turbo",
stopReason="endTurn",
)
async def run():
async with stdio_client(server_params) as (read, write):
async with ClientSession(
read, write, sampling_callback=handle_sampling_message
) as session:
# Initialize the connection
await session.initialize()
# List available prompts
prompts = await session.list_prompts()
# Get a prompt
prompt = await session.get_prompt(
"example-prompt", arguments={"arg1": "value"}
)
# List available resources
resources = await session.list_resources()
# List available tools
tools = await session.list_tools()
# Read a resource
content, mime_type = await session.read_resource("file://some/path")
# Call a tool
result = await session.call_tool("tool-name", arguments={"arg1": "value"})
if __name__ == "__main__":
import asyncio
asyncio.run(run())
MCP Primitives#
The MCP protocol defines three core primitives that servers can implement:
Primitive | Control | Description | Example Use |
---|---|---|---|
Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options |
Resources | Application-controlled | Contextual data managed by the client application | File contents, API responses |
Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates |
Server Capabilities#
MCP servers declare capabilities during initialization:
Capability | Feature Flag | Description |
---|---|---|
prompts | listChanged | Prompt template management |
resources | subscribe listChanged | Resource exposure and updates |
tools | listChanged | Tool discovery and execution |
logging | - | Server logging configuration |
completion | - | Argument completion suggestions |
Documentation#
- Model Context Protocol documentation
- Model Context Protocol specification
- Officially supported servers
Contributing#
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.
License#
This project is licensed under the MIT License - see the LICENSE file for details.