arxiv-mcp-server
A Model Context Protocol server for searching and analyzing arXiv papers
MCP Relevance Analysis
Summary
arxiv-mcp-server is a high relevance project related to Model Context Protocol. It has 997 stars and 55 forks on GitHub.
Key Features
- MCP integration capabilities
- AI context management
- Language model communication
- Structured data processing
Use Cases
- Enhancing LLM context handling
- Improving model response quality
- Building more effective AI applications
README
- ArXiv MCP Server
- โจ Core Features
- ๐ Quick Start
- Installing via Smithery
- Installing Manually
- Clone and set up development environment
- Create and activate virtual environment
- Install with test dependencies
- ๐ MCP Integration
- ๐ก Available Tools
- 1. Paper Search
- 2. Paper Download
- 3. List Papers
- 4. Read Paper
- ๐ Research Prompts
- Paper Analysis Prompt
- โ๏ธ Configuration
- ๐งช Testing
- ๐ License
ArXiv MCP Server#
๐ Enable AI assistants to search and access arXiv papers through a simple MCP interface.
The ArXiv MCP Server provides a bridge between AI assistants and arXiv's research repository through the Model Context Protocol (MCP). It allows AI models to search for papers and access their content in a programmatic way.
๐ค Contribute โข ๐ Report Bug
โจ Core Features#
- ๐ Paper Search: Query arXiv papers with filters for date ranges and categories
- ๐ Paper Access: Download and read paper content
- ๐ Paper Listing: View all downloaded papers
- ๐๏ธ Local Storage: Papers are saved locally for faster access
- ๐ Prompts: A Set of Research Prompts
๐ Quick Start#
Installing via Smithery#
To install ArXiv Server for Claude Desktop automatically via Smithery:
bashnpx -y @smithery/cli install arxiv-mcp-server --client claude
Installing Manually#
Install using uv:
bashuv tool install arxiv-mcp-server
For development:
bash# Clone and set up development environment
git clone https://github.com/blazickjp/arxiv-mcp-server.git
cd arxiv-mcp-server
# Create and activate virtual environment
uv venv
source .venv/bin/activate
# Install with test dependencies
uv pip install -e ".[test]"
๐ MCP Integration#
Add this configuration to your MCP client config file:
json{
"mcpServers": {
"arxiv-mcp-server": {
"command": "uv",
"args": [
"tool",
"run",
"arxiv-mcp-server",
"--storage-path", "/path/to/paper/storage"
]
}
}
}
For Development:
json{
"mcpServers": {
"arxiv-mcp-server": {
"command": "uv",
"args": [
"--directory",
"path/to/cloned/arxiv-mcp-server",
"run",
"arxiv-mcp-server",
"--storage-path", "/path/to/paper/storage"
]
}
}
}
๐ก Available Tools#
The server provides four main tools:
1. Paper Search#
Search for papers with optional filters:
pythonresult = await call_tool("search_papers", {
"query": "transformer architecture",
"max_results": 10,
"date_from": "2023-01-01",
"categories": ["cs.AI", "cs.LG"]
})
2. Paper Download#
Download a paper by its arXiv ID:
pythonresult = await call_tool("download_paper", {
"paper_id": "2401.12345"
})
3. List Papers#
View all downloaded papers:
pythonresult = await call_tool("list_papers", {})
4. Read Paper#
Access the content of a downloaded paper:
pythonresult = await call_tool("read_paper", {
"paper_id": "2401.12345"
})
๐ Research Prompts#
The server offers specialized prompts to help analyze academic papers:
Paper Analysis Prompt#
A comprehensive workflow for analyzing academic papers that only requires a paper ID:
pythonresult = await call_prompt("deep-paper-analysis", {
"paper_id": "2401.12345"
})
This prompt includes:
- Detailed instructions for using available tools (list_papers, download_paper, read_paper, search_papers)
- A systematic workflow for paper analysis
- Comprehensive analysis structure covering:
- Executive summary
- Research context
- Methodology analysis
- Results evaluation
- Practical and theoretical implications
- Future research directions
- Broader impacts
โ๏ธ Configuration#
Configure through environment variables:
Variable | Purpose | Default |
---|---|---|
ARXIV_STORAGE_PATH | Paper storage location | ~/.arxiv-mcp-server/papers |
๐งช Testing#
Run the test suite:
bashpython -m pytest
๐ License#
Released under the MIT License. See the LICENSE file for details.